Launch Webinar - July 15, 2020
Brought to you by the Big Data Innovation Hubs

The COVID Information Commons serves as an open resource to explore NSF-funded research addressing the COVID-19 pandemic.

https://covidinfocommmons.net

The COVID Information Commons is supported by the National Science Foundation through award #2028999.
Disclaimer: The opinions, findings, and conclusions or recommendations expressed here are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Agenda

• Welcome by the Big Data Innovation Hubs

• COVID Information Commons overview and demo

• Lightning Talks by PIs

• Next steps

https://covidinfocommons.net
COVID Information Commons Overview

• Increases accessibility of valuable information regarding NSF COVID RAPID research awards
• Facilitates knowledge sharing and collaboration across COVID research efforts
• Serves as a resource for researchers, students, and decision-makers from academia, government, not-for-profit and industry sectors to leverage research efforts and findings, and accelerate the most promising research to mitigate the broad societal impacts of the COVID-19 pandemic
• Organizes relevant information in multiple ways, e.g., by research topic, institution, geography
• Will allow research project teams to provide links to their data, and present project information in ways relevant and user friendly for users in academia, industry, government and non-profit sectors
• Will incorporate coronavirus-related information from NSF Open Knowledge Network projects, as well as from other NSF research projects in general, over time

https://covidinfocommons.net
COVID Information Commons Phased Approach

• Phase I - July 2020 – MVP Launch
 • Provide MVP website to search for US NSF COVID RAPID awards
 • Includes two search mechanisms and tools:
 • Customized NSF Simple Search for COVID RAPID awards by NSF Directorate
 • Advanced “COVID Research Explorer” with Machine Learning Generated Maps
 • Powerful query and visualization - search keywords, topic, award type, institution, size, state, etc.
 • Drill down by award – title, abstract, institution, PI name/email, state, start/end dates, etc.

• Phase II – by October 2020
 • Addition of COVID PI provided links to award related information and collaboration opportunities
 • Link to NSF Open Knowledge Network projects and other pertinent data sets
 • Additional collaboration capabilities

• Phase III – Post-award - TBD
 • Search for other pertinent award information
 • Further potential innovations based on user and collaborator feedback

https://covidinfocommmons.net
The COVID Information Commons serves as an open resource to explore NSF-funded research addressing the COVID-19 pandemic.
CLICK THESE ICONS TO FIND NSF COVID RAPID GRANTS BY NSF DIRECTORATE

- Biological Sciences
- Computer and Information Science and Engineering
- Education and Human Resources
- Engineering
- Geosciences
- Mathematical and Physical Sciences
- Social, Behavioral, and Economic Sciences
- Office of the Director

https://covidinfocommons.net
Disclaimer: The opinions, findings, and conclusions or recommendations expressed here are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

The COVID Information Commons is supported by the National Science Foundation through award #2028999.
About the COVID Information Commons

The COVID Information Commons (CIC) is an open website to facilitate knowledge sharing and collaboration across various COVID research efforts, initiated by the NSF Convergence Accelerator. The initial focus of the CIC website is on NSF-funded COVID Rapid Response Research (RAPID) projects. The CIC serves as a resource for researchers, students and decision-makers from academia, government, not-for-profits and industry to identify collaboration opportunities, to leverage each other's research findings, and to accelerate the most promising research to mitigate the broad societal impacts of the COVID-19 pandemic.

https://covidinfocommons.net
About the COVID Information Commons Tab – Phased Approach

Phased Approach

Phase I of the COVID Information Commons is scheduled to launch on July 10th, 2020. Phase I includes two forms of award searches into the public NSF Awards database. One is an NSF directorate-level breakdown of NSF funded COVID RAPID awards, connected to customized views of the NSF Simple Search website, which can be found by clicking the icons where it says "CLICK THESE ICONS TO FIND NSF COVID RAPID GRANTS BY NSF DIRECTORATE".

The second and innovative advanced award search is provided through the blue button on the website entitled [Click for COVID Research Explorer ML Maps](https://covidinfocommons.net). The COVID Research Explorer is a machine learning powered tool which clusters awards by multiple parameters and keywords. The COVID Research Explorer tool clusters awards in topographical maps by topical areas, and in polygonal tree maps with keyword labels. Each award represented has a drill-down capability to identify the award number, institution, Principal Investigator (PI) name and email, state, award amount, the abstract from the NSF award, as well as other publicly available NSF award information.

Contextual and keyword searches provide researchers and students the opportunity to identify research relevant to their work and potential collaborators to further COVID-related research for the good of society.

Phase II of the COVID Information Commons is scheduled to be available by October 2020. Phase II is projected to add multiple potential attributes including:

- Additional award information provided by the Principal Investigators, such as websites with their project information, links to materials and papers, and current collaborations
- New collaboration opportunities with the researchers
- Additional connections to NSF awards and other scientific collaborators

https://covidinfocommons.net
User Tutorial Video – Step-by-step tutorial and demo

https://covidinfocommons.net
Advanced Search Results

You Searched For:

- NSF Organization: Office Of The Director
- Keyword: COVID AND RAPID

Active Awards: true

Rapid: A Platform for Mitigating the Impacts of COVID-19 on the Healthcare System
Award Number: 2029557; Principal Investigator: Shahin Vassigh; Co-Principal Investigator: Shu-Ching Chen, Miguel Alonso Jr, Biayna Bogosian; Organization: Florida International University; NSF Organization: OIA Start Date: 06/01/2020; Award Amount: $159,300.00; Relevance: 47.67.

Rapid: COVID Information Commons (CIC)
Award Number: 2029999; Principal Investigator: Jeannette Wing; Co-Principal Investigator:; Organization: Columbia University; NSF Organization: OIA Start Date: 05/15/2020; Award Amount: $200,000.00; Relevance: 47.67.

Rapid: Improving Transportation Equity to Enhance Food Security for Families Vulnerable to COVID-19
Award Number: 2029518; Principal Investigator: Robert Hampshire; Co-Principal Investigator: Aditi Misra, Olutayo Fabusuyi, H. Jagadish; Organization: Regents of the University of Michigan - Ann Arbor; NSF Organization: OIA Start Date: 06/01/2020; Award Amount: $159,955.00; Relevance: 47.04.

Rapid: Collecting Reliable COVID-19 Datasets in Crisis Conditions
Award Number: 2029457; Principal Investigator: Rastislav Bodik; Co-Principal Investigator:; Organization: University of Washington; NSF Organization: OIA Start Date: 05/01/2020; Award Amount: $69,998.00; Relevance: 47.04.

Rapid: COVID-19: Net - Integrating Health, Pathogen and Environmental Data into a Knowledge Graph for Case Tracking, Analysis, and Forecasting
Award Number: 2028411; Principal Investigator: Peter Rose; Co-Principal Investigator: Ilya Zaslavsky; Organization: University of California-San Diego; NSF Organization: OIA Start Date: 05/15/2020; Award Amount: $200,000.00; Relevance: 46.53.

Rapid: Enhancing US manufacturing of small molecule active pharmaceutical ingredients (APIs) using Authoritative Systems Knowledge (ASK) - (ASK4APIs)
Award Number: 2029919; Principal Investigator: James Ferri; Co-Principal Investigator:; Organization: Virginia Commonwealth University; NSF Organization: OIA Start Date: 02/01/2020; Award Amount: $155,000.00; Relevance: 46.12.

Rapid: Supply Chain Portal to Serve Entrepreneurs Producing Critical Items in Response to COVID-19
Award Number: 2032040; Principal Investigator: Louisa Raschid; Co-Principal Investigator: Shivakumar Raman, Binil Starly, Jay Pujara; Organization: University of Maryland College Park; NSF Organization: OIA Start Date: 06/01/2020; Award Amount: $86,177.00; Relevance: 46.11.

Award Number: 2029746; Principal Investigator: Justine Hastings; Co-Principal Investigator:; Organization: National Bureau of Economic Research Inc; NSF Organization: OIA Start Date: 06/01/2020; Award Amount: $148,589.00; Relevance: 45.15.

Rapid: Increasing Healthcare Credential Open Data in Response to COVID-19
Award Number: 2029584; Principal Investigator: Jeffrey Grann; Co-Principal Investigator:; Organization: CREDENTIAL ENGINE, INC; NSF Organization: OIA Start Date: 06/01/2020; Award Amount: $54,250.00; Relevance: 45.15.
ABSTRACT

This project will create a COVID Information Commons (CIC) website to facilitate knowledge sharing and collaboration across various COVID research efforts, especially focusing on all the NSF-funded COVID Rapid Response Research (RAPID) projects. The CIC will serve as a resource for researchers as well as decision-makers from government, academia, not-for-profit and industry to leverage each other’s findings, and invest in and accelerate the most promising research to mitigate the broad societal impacts of the COVID-19 pandemic. It will also serve as a model for integrated knowledge sharing and collaboration on other public health challenges, in benefit to society. Projects will be able to enter and publish information about their efforts in ways that are most relevant to user-friendly for a variety of potential stakeholders from academia, industry, government, and non-profit sectors. Information will be organized in multiple ways, for example, by research topics and areas and by geography. In addition to information from NSF COVID-19 RAPID projects, the COVID Information Commons will incorporate coronavirus-related information from NSF Open Knowledge Network projects, as well as from other NSF research projects in general.

The COVID Information Commons will utilize information science methods to bring together information about the collection of COVID-19 RAPID projects funded by the National Science Foundation. A wide array of research efforts are underway to study the impacts of the pandemic in fields as far ranging as biophysics, social justice/inequality, behavioral science, public health, supply chains, and risk management. The CIC will semantically link information across projects to provide a more holistic view across distinct efforts, including efforts such as the COVID projects in the NSF Open Knowledge Network. The resulting, concise, curated, integrated resource will provide insight into NSF-funded COVID RAPID projects and facilitate collaborations among such efforts. These objectives will be achieved using information science approaches to 1) compile a comprehensive list of NSF COVID RAPID awards, along with relevant details for each project; 2) link to any publicly available data sets and data feeds; 3) organize the information and data feeds, for example, by categories of research areas and/or geography, using a meta-data schema developed for the resource and existing taxonomy and semantic frameworks; 4) design and develop a web portal to allow project teams to publish their data, or links to the data, and present project information in ways that are most relevant and user friendly for researchers in academia, industry, and government; 5) integrate the schema.org COVID-19 annotated data to enable more effective identification, retrieval, and integration of relevant data. A Minimum Viable Product for the website will be developed first, working with stakeholders in the community to prioritize features and add new functionality. In addition to the Information Commons, the project will also assess the effort and feasibility of implementing a data and model commons?to share datasets as well as data-driven models, such as machine learning models related to COVID-19.

This RAPID award is made by the Convergence Accelerator program in the Office of Integrative Activities with funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardeSearch@nsf.gov.
COVID Information Commons – COVID Research Explorer

CLICK THESE ICONS TO FIND NSF COVID RAPID GRANTS BY NSF DIRECTORATE

- Biological Sciences
- Computer and Information Science and Engineering
- Education and Human Resources
- Engineering
- Geosciences
- Mathematical and Physical Sciences
- Social, Behavioral, and Economic Sciences
- Office of the Director

https://covidinfocommons.net
COVID Research Explorer – NSF Awards Topographical Map
Rapid: Physics of Coronavirus SARS-CoV-2 Survival Outside a Host and Implications for Seasonal Dependence of COVID-19 Outbreaks

There is currently a lack of information on SARS-CoV-2 particle stability in varied environmental conditions. This project will create mechanistic insight which will estimate the persistence of infectious particles and is critical for predictions of viral spread as well as informing public health. Two graduate students will collaborate during these experiments. This work will form a substantial part of the graduate thesis for these students. Measurements of structural limits of viral particles using atomic force microscopy and holographic optical tweezers will also inform our general knowledge of the viral envelope stability as applied to other enveloped viruses.

The COVID-19 disease caused by the SARS-CoV-2 (2019-nCoV) virus poses an acute and novel public health crisis. The knowledge gained from the proposed work will immediately inform the projections of
COVID Research Explorer – Customize the view by State and Institution

https://covidinfocommons.net
COVID Research Explorer – Awards by Institution in New York

Research has found that disruptive social events can lead to increased social bias toward outgroup members. This research examines this relationship in the context of the COVID-19 crisis in the United States, which has adversely affected the health and economic well-being of millions of Americans. Although numerous incidents of bias directed toward immigrants and people of Asian descent have been reported since the outbreak began, research is needed to understand the extent of this bias and the factors that produce it. This research will address this need, by analyzing both existing as well as new survey data from nationally representative samples of Americans collected throughout much of 2020, as the crisis emerged and continues to evolve. The results will provide insights into how COVID-19 is affecting social attitudes in the United States, and more generally, into the ways that diverse societies respond to large-scale disruptions that threaten their way of life.

https://covidinfocommons.net
The goal of this 12-month project is to develop a data archive for multimodal data related to COVID-19 and to provide various statistical and analytic tools for researchers. There is an immediate need to study SARS-CoV-2 and COVID-19, and this archive provides access to data along with user-friendly tools for researchers to perform analyses to better understand COVID-19 and encourage collaboration on this research. The COVID-19 pandemic is spreading rapidly across the world, and governments are imposing travel bans, quarantine laws, business and school closings, and many other restrictions in efforts to contain the virus and limit the spread. However, much is still unknown about SARS-CoV-2 and COVID-19.

There is an urgent need for scientists around the world to work together to model the virus, study how the virus has changed and will change over time, understand how it spreads, and discover a vaccine. The work from this project can also prepare scientists for future pandemics by putting the infrastructure in place to enable researchers to access data.
RAPID: Developing Social Differentiation-respecting Disease Transmission Models
2029790
174891
Duke University
lkeister@soc.duke.edu
jmoody77@soc.duke.edu
dana.pasquale@duke.edu
Lisa Keister
James Moody
A PRISM Center

In this project, transmission models that account for differences in social networks and exposure opportunities are developed to gain insight into the unequal spread of COVID-19 across populations. Some areas have experienced slow to no spread of COVID-19 while other settings have been overwhelmed. Within high-volume locations, some neighborhoods have been at much greater risk than others. To account for this uneven spread, these models incorporate population differences related to social density and sociodemographic characteristics. Features that shape disease exposure and ability to social distance. These models augment general understanding of how social situation affects both disease risk and the cost of disease mitigation efforts, which will allow decisionmakers to evaluate the relative costs of different health-preserving interventions and, potentially, optimize interventions that minimize economic harm while maximizing physical safety.

https://covidinfocommons.net
COVID Research Explorer – Awards by Institution in Ohio

https://covidinfocommons.net
COVID Research Explorer – Awards by Institution in Maryland

https://covidinfocommons.net
COVID Research Explorer – Awards by Institution in Illinois

https://covidinfocommons.net
COVID Research Explorer – Customize the view by PI

https://covidinfocommons.net
COVID Research Explorer – Zoom in on the view by PI in CA

https://covidinfocommons.net
COVID Research Explorer – Query By Topic showing PI/Co-PI by State

https://covidinfocommons.net
COVID Research Explorer – Query By Topic showing Institution by State

https://covidinfocommons.net
COVID Research Explorer – Query By New Topic showing Institution by State

https://covidinfocommons.net
Click on my Institution – who else is doing research on this topic in my State

https://covidinfocommons.net
COVID Research Explorer – Customize the view with “Fields”

https://covidinfocommons.net
Lightning Talks by COVID PIs

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Institution</th>
<th>COVID Award Type: Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felicia Jefferson</td>
<td>Fort Valley State University</td>
<td>RAPID: Effects of the Move to Online Teaching on the Rural HBCU Community due to the Coronavirus (COVID-19) Pandemic</td>
</tr>
<tr>
<td>Peter Rose</td>
<td>University of California – San Diego</td>
<td>RAPID: COVID-19-Net: Integrating Health, Pathogen and Environmental Data into a Knowledge Graph for Case Tracking, Analysis, and Forecasting</td>
</tr>
</tbody>
</table>

https://covidinfocommons.net
COVID Information Commons

RAPID: Effects of the Move to Online Teaching on the Rural HBCU Community due to the Coronavirus (COVID-19) Pandemic

Felicia Jefferson, Ph.D.,
Associate Professor

Jasmine Paul, Ph.D.,
Associate Professor,

Biology Department, College of Arts & Sciences,
Fort Valley State University
NSF Award #2028573
July 15, 2020
Introduction

About Fort Valley State University

- 1890 Morrill Act Land-Grant Institution
- Public, apart of the University System of GA
- Rural, located in Central and Middle Georgia
- A Historically Black Colleges and Universities (HBCU)
- Primarily Undergraduate Teaching Institution
 - Graduate Programs
 - Research Capacity

Researchers

Neuroscience, Biology, Engineering, and Sleep (NeuBEs) Laboratory (www.neubefvsu.com)

Faculty
- Dr. Felicia Jefferson, Director
- Graduate Students (6)
- Undergraduate students (22)
- Undergraduate Students (6)
- Mayes/Murow Biogy, Biotechnology, Chemistry, Nuclear Engineering
- Graduate Students (5)
- Undergraduate Students (4)
- Undergraduate Students (2)
- Undergraduate Students (1)
- Faculty
- Merick, J., McManus, L., McManus, S., McManus, M., McManus, K., McManus, A., McManus, H.

Partnered: LARK
- Merick, J., McManus, L., McManus, S., McManus, M., McManus, K., McManus, A., McManus, H.

Dr. Felicia Jefferson
- Education: Biotechnology (B.S.) and German Language (B.A.) - (RIT), Molecular Genetics and Biochemistry (M.S.) – (GSU), Neuroscience and Biomedical Science (Ph.D.) – (MSM), Behavioral Neuroscience Research Fellow (Postdoctoral) - (Emory)
- Appointments: Industry Employment: Bausch & Lomb, Procter & Gamble, Schering-Plough (now Merck), American Management Association, Positions: Staff Scientist III, Staff Scientist V, Review Manager, Contributing Editor; Academic: Fort Valley State University, (Tenured Associate Professor Biology)

Let us know if you’re interested in participating
Contact: jeffersonf@fvsu.edu and paulj@fvsu.edu

- Universities we are working with:
 - Bluefield State College
 - Chaflin University
 - Elizabeth City State University
 - Grambling State University
 - Kentucky State University
 - Louisiana State University
 - Mississippi Valley State University
 - Morehouse School of Medicine
 - Prairie View A&M University
 - Rust College
 - Selma University
 - South Carolina State University
 - Southwestern Christian College
 - Talladega College
 - Tuskegee University
 - University of Maryland Eastern Shore
 - University of Texas Arlington
 - University of Virgin Islands
 - Voorhees College
 - Wiley College
COVID-19-Net

Peter W. Rose, Structural Bioinformatics Lab
Ilya Zaslavsky, Spatial Information Systems Lab
San Diego Supercomputer Center
UC San Diego
pwrose@ucsd.edu, zaslavsk@sdsc.edu
Integrate heterogeneous biomedical and environmental datasets to help researchers analyze the interplay between host, pathogen, and environment.
Coordinated COVID-19 Efforts

UCSB

UCSF

UCSD

Open Knowledge Network forecasts, models, dashboards

Population characteristics: from perceptions to genomics

Health data: diseases, treatments, prevention, social conditions

Biomedicine: genes, proteins, body, diseases, drugs

Pathogens: COVID viral strains, pathogen-host interactions, SARS, MERS

Environmental factors

Infrastructure resilience: transportation, supply chains

Local regulations: social distancing, quarantine, ...
Automated, Transparent, Reproducible Workflow
Acknowledgements

Project COVID-19-Net funded by NSF OIA-2028411
David Valentine
UCSD DSC 198 Course: Data Science Students

Project KONQUER funded by NSF OIA-1937136

Lucila Ohno-Machado
Hua Xu
Joe Hamman

Graphs4Good
<table>
<thead>
<tr>
<th>PI Name</th>
<th>Institution</th>
<th>COVID Award Type: Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhishek Dubey</td>
<td>Vanderbilt University</td>
<td>Collaborative Research: RAPID: Addressing Transit Accessibility and Public Health Challenges due to COVID-19</td>
</tr>
<tr>
<td>Ali Rahnavard</td>
<td>George Washington University</td>
<td>RAPID: A novel platform for data integration and deep learning on COVID-19</td>
</tr>
<tr>
<td>Ashok Srinivasan</td>
<td>University of West Florida</td>
<td>Collaborative: RAPID: Leveraging new data sources to analyze the risk of covid-19 in crowded locations</td>
</tr>
<tr>
<td>Branden Johnson</td>
<td>Decision Science Research Institute</td>
<td>RAPID: Media Exposure, Objective Knowledge, Risk Perceptions, and Risk Management Preferences of Americans Regarding the Novel Coronavirus Outbreak</td>
</tr>
<tr>
<td>Chris Cherry</td>
<td>University of Tennessee Knoxville</td>
<td>Collaborative Research: RAPID: Maintain Mobility and Reduce Infection Through a Resilient Transit and Micromobility System</td>
</tr>
<tr>
<td>Deb Niemeier</td>
<td>University of Maryland - College Park</td>
<td>RAPID: Combining Big Data in Transportation with Hospital Health Data to Build Realistic "Flattening the Curves" Models during the COVID-19 Outbreak</td>
</tr>
<tr>
<td>Debbie Kim</td>
<td>University of Chicago</td>
<td>RAPID: Pandemic Learning Loss in U.S. High Schools: A National Examination of Student Experiences</td>
</tr>
<tr>
<td>Debra F. Laefer</td>
<td>New York University</td>
<td>RAPID: DETER: Developing Epidemiology mechanisms in Three-dimensions to Enhance Response</td>
</tr>
<tr>
<td>Dominique Duncan</td>
<td>University of Southern California</td>
<td>RAPID: COVID-ARC (COVID-19 Data Archive)</td>
</tr>
</tbody>
</table>

Upcoming COVID Lightning Talks by PI’s – Page 1

https://covidinfocommons.net
<table>
<thead>
<tr>
<th>PI</th>
<th>Institution</th>
<th>COVID Award Type: Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erick C. Jones</td>
<td>University of Texas - Austin</td>
<td>EAGER: Al-Enabled Optimization of the COVID-19 Therapeutics Supply Chain to Support Community Public Health</td>
</tr>
<tr>
<td>Foad Hamidi</td>
<td>University of Maryland – Baltimore County</td>
<td>RAPID: “Responding to COVID-19 using High-speed Mesh Wireless Community Network Internet”</td>
</tr>
<tr>
<td>Gloria S. Oporto</td>
<td>West Virginia University</td>
<td>RAPID: Prototype of a medical mask using a novel antimicrobial / antiviral biofilter material</td>
</tr>
<tr>
<td>Howard Stone</td>
<td>Princeton University</td>
<td>RAPID: Flow Asymmetry in Human Breathing and the Asymptomatic Spreader</td>
</tr>
<tr>
<td>Jeff Grann, Ph.D.</td>
<td>Credential Engine</td>
<td>RAPID: Increasing Healthcare Credential Open Data in Response to COVID-19</td>
</tr>
<tr>
<td>John MacArthur</td>
<td>Portland State University</td>
<td>Collaborative Research: RAPID: Maintain Mobility and Reduce Infection Through a Resilient Transit and Micromobility System</td>
</tr>
<tr>
<td>John Yin</td>
<td>University of Wisconsin - Madison</td>
<td>RAPID: Ecological Dynamics of Human Coronavirus</td>
</tr>
<tr>
<td>Kevin Fu</td>
<td>University of Michigan</td>
<td>RAPID: SaTC: COVID19: Science of using wirelessly powered sensors to quickly scale up verifiable decontamination of individual N95 respirator masks</td>
</tr>
<tr>
<td>Lalitha Sankar</td>
<td>Arizona State University</td>
<td>RAPID: SaTC: FACT: Federated Analytics based Contact Tracing for COVID-19</td>
</tr>
<tr>
<td>Leila Hedayatifar</td>
<td>NECSI</td>
<td>RAPID: Modeling COVID-19 in the context of optimizing quarantine policy</td>
</tr>
<tr>
<td>Mauricio Terrones</td>
<td>Penn State</td>
<td>EAGER: Portable device for rapid and label-free identification of COVID-19 using an ultra-miniature handheld Raman spectrometer</td>
</tr>
</tbody>
</table>

https://covidinfocommons.net
Upcoming COVID Lightning Talks by PI’s – Page 3

<table>
<thead>
<tr>
<th>PI</th>
<th>Institution</th>
<th>COVID Award Type: Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Pazzani</td>
<td>University of California – San Diego</td>
<td>RAPID: Explainable Machine Learning for Analysis of COVID-19 Chest CT</td>
</tr>
<tr>
<td>Murat Kantarcioglu</td>
<td>University of Texas at Dallas</td>
<td>RAPID: Collaborative: A Privacy Risk Assessment Framework for Person-Level Data Sharing During Pandemics</td>
</tr>
<tr>
<td>Nian Sun</td>
<td>Northeastern University</td>
<td>RAPID: New Handheld Gas Sensors for Airborne SARS-CoV-2 Virus: Instant COVID-19 Diagnosis from Exhaled Breath</td>
</tr>
<tr>
<td>Niema Moshiri</td>
<td>University of California – San Diego</td>
<td>RAPID: Real-time phylogenetic inference and transmission cluster analysis of COVID-19</td>
</tr>
<tr>
<td>Nora Garza</td>
<td>Laredo College</td>
<td>RAPID: Using real life COVID-19 Data to teach quantitative reasoning skills to undergraduate Hispanic STEM students.</td>
</tr>
<tr>
<td>Payam Sheikhattari</td>
<td>Morgan State University</td>
<td>RAPID/Collaborative Research: Developing Pandemics and Healing Models for Coronavirus COVID-19 to Assist in Policy Making</td>
</tr>
<tr>
<td>Pedro Alvarez</td>
<td>Rice University</td>
<td>RAPID: Molecular Imprinting of Coronavirus Attachment Factors to Enhance Disinfection by a Selective Photocatalytic "Trap-and-Zap" Approach</td>
</tr>
<tr>
<td>Praveen Rao</td>
<td>University of Missouri - Columbia</td>
<td>RAPID: Democratizing Genome Sequence Analysis for COVID-19 Using CloudLab</td>
</tr>
</tbody>
</table>

https://covidinfocommons.net
Upcoming COVID Lightning Talks by PI’s – Page 4

<table>
<thead>
<tr>
<th>PI</th>
<th>Institution</th>
<th>COVID Award Type: Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rachel Wu</td>
<td>University of California - Riverside</td>
<td>RAPID: Older adults' learning and adaptation as resilience processes to counter social isolation during the COVID-19 pandemic</td>
</tr>
<tr>
<td>Samantha Penta</td>
<td>University at Albany</td>
<td>RAPID: A Multi-Wave Study of Risk Perception, Information Seeking, and Protective Action in COVID-19</td>
</tr>
<tr>
<td>Shelley McGuire</td>
<td>University of Idaho</td>
<td>RAPID: Collaborative Research: COVID-19, human milk and infant feeding</td>
</tr>
<tr>
<td>Tracy Van Holt</td>
<td>New York University</td>
<td>RAPID Collaborative: Networks and Spatial Dynamics of the US Food Supply Chain amid the COVID-19 Pandemic</td>
</tr>
<tr>
<td>Viktor K. Prasanna</td>
<td>University of Southern California</td>
<td>RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response</td>
</tr>
<tr>
<td>Wesley Shrum</td>
<td>Louisiana State University</td>
<td>RAPID: A Comparative Study of How Context Shapes Responses to COVID-19</td>
</tr>
<tr>
<td>Xifeng Yan</td>
<td>University of California – Santa Barbara</td>
<td>IIII: RAPID: Interventional COVID-19 Response Forecasting in Local Communities Using Neural Domain Adaptation Models</td>
</tr>
<tr>
<td>Ying (Sarah) Zhong</td>
<td>University of South Florida</td>
<td>RAPID: COVID-19: Sterilization Mechanism of Corona Discharge for Masks and Environment</td>
</tr>
<tr>
<td>Yung-Hsiang Lu</td>
<td>Purdue University</td>
<td>Collaborative: RAPID: Leveraging New Data Sources to Analyze the Risk of COVID-19 in Crowded Locations</td>
</tr>
</tbody>
</table>

https://covidinfocommons.net
FAIR Principles in the COVID Info Commons

• Findable – Find all NSF RAPID awards related to COVID easily, in context

• Accessible – Access all NSF COVID RAPID public award information – award title, abstract, type, institution, state, PI & Co-PI names/emails, amount, start & end date, program reference codes, program element codes, etc.

• Interoperable – In Phase II enabling more researcher collaboration, and links to PI provided datasets and award-related information

• Reusable – Reuse the information from the COVID Information Commons, extract and share topical maps, awards and spreadsheets

https://covidinfocommons.net
Next Steps

• Watch the COVID Information Commons tutorial video – https://covidinfocommons.net
• Use it, share it, provide feedback and input for future phases on the feedback form
• Join the covidcommons Slack channel – https://bit.ly/2Wk416B - it’s on the CIC website
• Sign up for the COVID Information Commons Community and CIC events
• Offer to present a lightning talk at CIC webinars
• Join COVID Info Commons Community proposal for [International FAIR Convergence Symposium organised by CODATA and GO FAIR](https://covidinfocommons.net), 22-23 October 2020 (Paris/virtual)
 • Track: CRISIS REDUCTION AND RESPONSE (learning from COVID-19 outbreak)
 • EMAIL US BY JULY 17th (proposal due July 20th) info@covidinfocommons.net
• Save the Date Oct 14-16, 2020 (online): [Academic Data Science Alliance Annual Meeting](https://covidinfocommons.net), Rapid Response joint session with Data Science Leadership Summit | July 20 deadline
• For any of the above or questions, email us at info@covidinfocommons.net
Q&A

Thank You

• Florence D. Hudson, Executive Director, Northeast Big Data Innovation Hub, fh2417@Columbia.edu
• Renata Rawlings-Goss, Executive Director, South Big Data Innovation Hub, rrawlings.goss@gatech.edu
• Meredith M. Lee, Executive Director, West Big Data Innovation Hub, mmlee@berkeley.edu
• John MacMullen, Executive Director, Midwest Big Data Innovation Hub, wjohn@illinois.edu

https://covidinfocommons.net